Human Interrupted Task Compliance Robot April 2024

Introduction

The outcome of this project is a platform for Western University's robotics club, WEBots. The platform allows the club's members to test their subsystems in a safe way, without requiring a full robot. The robot is designed to offer a safe way to quickly iterate design ideas.

Problem Definition

WEBots has had difficulty working on Project TITAN due to steep learning curves and sub team interdependencies. The club requires a platform that allows their members to safely test, demonstrate, and communicate their ideas.

Project Scope

TITAN is a 6ft humanoid robot, but the project focuses on supporting members with the design of TITAN's arms. The platform needs to be modular and flexible for testing. The platform's focus is on motion planning for task completion with interchangeable hardware. A key safety requirement is handling physical collisions arising due to student error.

The input of the system is the student's planned trajectory with the platform handling cases of collision.

Design Objectives		
Property Property	Objective	
Size	Low weight for portability	
Hardware	Allow for swapable hardware components	
Lifespan	Low wear components to avoid replacement	
Waste	Use recyclable materials where possible	
Repeatability	Repeated usage does not impact	
	performance	

Design Constraints		
Property	<u>Constraint</u>	
Cost	Remain within WEBots budget	
Sensor Type	Only use TITAN competition	
	allowable sensors	
User Safety	No hazardous materials	
System Safety	Damage from student misuse is	
	prevented	
Camera Input	Must allow camera input for	
	TITAN compatibility	

Design Subsystems

<u>Joints</u> •Allows slippage without damaging the gears

•Resilient to Student misuse and over torquing of joints •If linkage torque exceeds magnet strength, slippage

Collision Detection

•Dual encoder system one tracks rotation of motor second tracks rotation of linkage •If these values differ, slippage is detected

if these values differ, slippage is detected

ROS2 Integration

Path planning & simulation done in ROS2
ROS2 features easy hardware agnostic and testing
Allows WEBot members to gain experience on an increasingly popular robotics tool

Digital Image Processing

- Manipulator features a camera to capture the environment
- Images of the workspace size and task are processed to determine path planning

Mechanical Linkages

 Linkages were chosen using Ansys Granta and 2 performance equations optimizing mass, with required stiffness and strength

 Analysis yielded 30% long carbon fiber as the best linkage material selection

Finite Element Analysis of Joints • Horizontal and vertical loading

Analysis of Magnetic Gearing

• Utilized EMS to for different configurations and torque analysis.

Torque Analysis of Arm

• Simscape Multibody analysis of torque on joints to get requirements

Final Design

Design & Prototype

• The final design is the robot arm in earlier portions of this poster.

• The prototype handles the joints separately; however, the ROS simulation would show in real time the endeffectors position due to the motors.

•The prototype also utilizes a laser that points where the end-effector of the robot would be due to the revolution of the motors.

Conclusion & Future Directions

This project has been a great learning experience for the group and future iterations will be added to allow more types of tests (torque testing, computer vision, etc) for WEBots members.

References

[1] Axial Flux Cycloidal magnetic gears | IEEE Journals & Magazine | IEEE ..., https://ieeexplore.ieee.org/document/6646317/ (accessed Nov. 27, 2023)